Genetic Programming for Image Analysis
نویسنده
چکیده
This paper describes an approach to using GP for image analysis based on the idea that image enhancement, feature detection and image segmentation can be re-framed as filtering problems. GP can discover efficient optimal filters which solve such problems but in order to make the search feasible and effective, terminal sets, function sets and fitness functions have to meet some requirements. We describe these requirements and we propose terminals, functions and fitness functions that satisfy them. Experiments are reported in which GP is applied to the segmentation of the brain in medical images and is compared with artificial neural nets.
منابع مشابه
A Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm
In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...
متن کاملA Method for Solving Optimal Control Problems Using Genetic Programming
This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.
متن کاملA Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملFrequency domain analysis of transient flow in pipelines; application of the genetic programming to reduce the linearization errors
The transient flow analyzing by the frequency domain method (FDM) is computationally much faster than the method of characteristic (MOC) in the time domain. FDM needs no discretization in time and space, but requires the linearization of governing equations and boundary conditions. Hence, the FDM is only valid for small perturbations in which the system’s hydraulics is almost linear. In this st...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996